If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3c^2-6c+2=0
a = 3; b = -6; c = +2;
Δ = b2-4ac
Δ = -62-4·3·2
Δ = 12
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{12}=\sqrt{4*3}=\sqrt{4}*\sqrt{3}=2\sqrt{3}$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{3}}{2*3}=\frac{6-2\sqrt{3}}{6} $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{3}}{2*3}=\frac{6+2\sqrt{3}}{6} $
| .5(n+4)=10 | | Y=9/8x-14 | | 5x+5+5x+51=20x+84-100 | | 3(m=4)=39 | | 4+(x+9)=16 | | -5x+-14=19+-8x | | 4x+13=-7x-17 | | 4(x)+9=16 | | 5x-54=2x-6 | | n=n(6.5-0.5n)/2 | | √3x+1-√x+1=2 | | 49(x+9)=16 | | 5-4x-12=15 | | 4(4.5x+2)=6(3x+8) | | 4(4s+$)=32 | | 3(4.5x+2)=4(3.7x+8) | | 6x+5=3x-6 | | -6(x-1)+5=4(x-2) | | 6+3y=42-3y | | 5x^2+10x+48=0 | | 42*(8x)=180 | | 8-(3y+2)=9y+2 | | 5x+14=2(4x+7) | | 8(x+6)+3=-11(x-4)-5 | | 1.2=(6x+21) | | 39=-7x+5(x-5) | | 12x/x=6 | | -15-a=-20+4a | | (2x)(2x+2)=168 | | 50*(4x)=90 | | 15-7a=20-2a | | (2x)(2x+2=168 |